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Tamas I. Gombosi,∗ Gábor Tóth,† Darren L. De Zeeuw,∗ Kenneth C. Hansen,∗
Konstantin Kabin,∗ and Kenneth G. Powell∗

∗Center for Space Environment Modeling, University of Michigan, Ann Arbor, Michigan, 48109-2143,
†Center for Space Environment Modeling, University of Michigan, Ann Arbor, Michigan, 48109-2143,

and Department of Atomic Physics, Loránd Eötvös University, Budapest, Hungary
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We derive a system of equations for semirelativistic magnetohydrodynamics
(MHD) in which the bulk speed and the sound speed of the plasma are nonrela-
tivistic, but the Alfvén speed can be relativistic. The characteristic wave speeds of
the modified equation set are determined and compared to the wave speeds in “clas-
sical” (MHD). The stability conditions of the semirelativistic MHD equations are
also investigated in detail.

This form of the MHD equations has a use beyond modeling flows with high Alfvén
speeds. Even in cases with moderate Alfvén speeds, the semirelativistic form or
certain approximations of it can be used to achieve accelerated numerical convergence
to steady-state solutions by artificially reducing the speed of light, provided that the
steady-state solutions of these equations are fully independent of the speed of light.
Numerical tests are presented that demonstrate the behavior of solutions at high
Alfvén speeds and the convergence acceleration that can be achieved when a steady-
state solution is desired. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

The Alfvén speed in nonrelativistic magnetohydrodynamics (MHD) is defined as VA =
B/

√
µ0ρ, where B is the magnitude of the magnetic field, ρ is the plasma mass density,

and µ0 is the permeability of vacuum. In some space plasmas VA can evaluate to speeds
larger than the speed of light, c. For example, in the near-Earth auroral zone of the terrestrial
magnetosphere VA is of the order of the speed of light, while in Jupiter’s polar regions VA/c
can reach 10 or more. In such situations nonrelativistic MHD clearly loses validity.

In this paper we consider a semirelativistic set of MHD equations that combines nonrela-
tivistic fluid dynamics with a fully relativistic treatment of the equations of electrodynamics.
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In essence this means that the displacement current and the electric force acting on the charge
density are not neglected when the MHD equations are derived. Some of these modified
equations were derived a long time ago and extensively investigated by Boris [2]. He showed
that by keeping the displacement current the wave speeds of the semirelativistic equations
become bounded by the speed of light in the plasma frame. This observation led Boris to
suggest another possible use of the semirelativistic MHD equations: by artificially lowering
the value of c one can reduce the wave speeds, which in turn allows bigger time steps for ex-
plicit numerical schemes. Both the semirelativistic corrections of classical MHD equations
and the idea of artificially lowering the speed of light are known in the MHD community
as the “Boris correction.”

The semirelativistic MHD equations in their simplest nonconservative form involve
c in two terms only: the displacement current (1/µ0c2)(∂E/∂t) and the electric force
(1/µ0c2)E∇ · E acting on the charge density. In steady-state solutions all time derivatives
vanish; thus the value of c in the displacement current can be treated as a free parameter and
can artificially be lowered without changing the final steady-state solution. Consequently
the semirelativistic MHD equations with an artificially lowered speed of light can be used
as a physics-based acceleration technique toward steady state. We note already here that
the c parameter in the charge density should not be changed (since the electric acceleration
force does not vanish in steady state), which results in a source term that has not been
considered previously. When the semirelativistic MHD equations are used with a reduced
speed of light, the stability of the equations becomes nontrivial.

There are various simplified forms of the semirelativistic MHD equation that can also
be used for acceleration to a steady state. One version proposed by Boris differs from the
nonrelativistic MHD equations only in the time derivative of the momentum, where the
momentum is multiplied with a coefficient γ −2

A = 1 + V 2
A/c2. This modification is fully

conservative and the steady state is independent of the speed of light, because it only occurs
in a time derivative. Another type of approximation uses the primitive nonconservative form
of the MHD equations and multiplies the Lorentz force j × B by a factor γ 2

A. This form has
been used for many years, for both steady state and time accurate applications (e.g., [13, 18,
23]), although in this case the steady state is not independent of the speed of light. We will
examine the wave speeds and the stability of these simplified forms of the semirelativistic
MHD equations as well.

The reduced speed of light acceleration technique may even apply to certain time-accurate
calculations. If the simulation domain consists of a dynamic part, in which even the lowered
speed of light c is much larger than the wave speeds, and a quasi-stationary part, in which
the wave speeds are limited by c, the solution is likely to be unaffected by the acceleration.
Such a situation is typical in some magnetospheric simulations, in which the time step is
limited by the extremely large wave speeds close to the magnetized body where the flow
is essentially stationary, while far from the body there are dynamic variations but the wave
speeds are orders of magnitude lower.

The paper is organized as follows. In Section 2 we derived the semirelativistic MHD
equations in various forms. We also briefly discuss some simplified forms. The wave
speeds and the stability of the semirelativistic MHD equations are examined in Sections 3
and 4. Section 5 gives the wave speeds for two of the simplified forms of the semirel-
ativistic equations. The splitting of the magnetic field into an analytic B0 term and a
deviation B1 term (introduced for classical MHD by Ogino and Walker [15] and later
applied to Godunov-type schemes by Tanaka [20]) is generalized to the semirelativistic
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case in Section 6. Numerical tests are presented in Section 7 and we conclude with
Section 8.

2. SEMIRELATIVISTIC MHD EQUATIONS

2.1. Relativistic MHD in the Low-Speed Limit

To derive the semirelativistic MHD equations, we start with the conservative form of the
relativistic MHD equations [9–11],

∂W
∂t

+ (∇ · F)T = 0, (1)

where the state vector, W, and the flux diad, F, are

W =





ρ


2 e + p
c2 u + 1

c2 SA

B


2(e + p) − p − 
ρc2 + eA


 (2)

and

F =





ρu

2

c2 (e + p)uu + pI + PA

uB − Bu

[
2(e + p) − 
ρc2]u + SA




T

. (3)

In Eqs. (2) and (3) we used the following definitions:


 = 1√
1 − u2

c2

, (4)

SA = 1

µ0
(E × B), (5)

eA = 1

2µ0

(
B2 + 1

c2
E2

)
, (6)

PA = eAI − 1

µ0
BB − 1

µ0c2
EE. (7)

Here 
, SA, eA, and PA are the Lorentz factor, the Poynting vector, the electromagnetic
energy density, and the electromagnetic pressure tensor, respectively. Furthermore, I is the
3 by 3 identity matrix and E = − u × B is the motional electric-field vector. In the relativistic
MHD equations ρ, p, and e are the mass density, the pressure, and the internal (thermal and
rest mass) energy density in the local rest frame of the fluid. The plasma pressure is the sum
of the electron and ion pressures, p = pe + pi . It should be emphasized that one must use a
relativistic equation of state to define the energy density e. For relativistic, perfect gases the
relativistic form of the Maxwell–Boltzmann distribution must be used and the equation of
state becomes substantially more complicated [8]. Finally, we note that p is frame invariant
and that the transformation of ρ to the laboratory frame is ρL = 
ρ.
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Next we take the semirelativistic limit of (1). This limit is obtained by assuming that
the plasma flow itself is nonrelativistic, but keeping the full relativistic form of the electro-
magnetic terms. Mathematically speaking, we assume that both the bulk speed u and the
sound speed a = √

γ p/ρ (where γ is the specific heat ratio) are nonrelativistic (u, a � c);
therefore the internal energy becomes

e = ρc2 + p

γ − 1
, (8)

which includes the thermal energy density and the energy density associated with the rest
mass. Second-order terms in u/c and a/c are dropped only when a similar zeroth-order term
is present. This is quite straightforward and requires care only when 
 or 
2 is multiplied
by a term including ρc2. In this case we must use 
 ≈ 1 + u2/(2c2); otherwise we simply
use the stronger limit 
 → 1. Applying these limits and keeping the electromagnetic terms
intact yields

W =




ρ

ρu + 1
c2 SA

B
1
2ρu2 + p

γ−1 + eA


 , (9)

F =




ρu

ρuu + pI + PA

uB − Bu(
1
2ρu2 + γ p

γ − 1

)
u + SA




T

. (10)

In semirelativistic MHD, Eq. (1) is solved with the state vector and flux diad given by
expressions (9) and (10).

In a scheme based on the semirelativistic MHD equation, it is necessary to convert
the vector of conserved variables W in (9) to the primitive variables. The only nontrivial
transformation involves the semirelativistic momentum

m = ρu + 1

c2
SA = ρu − 1

µ0c2
(u × B) × B. (11)

Using some vector identities and V 2
A = B2/(µ0ρ), the semirelativistic momentum can be

rewritten as

m =
[

I + V 2
A

c2
(I − bb)

]
· (ρu), (12)

where we introduced the unit vector parallel with the magnetic field

b = B
|B| . (13)

The matrix multiplying ρu in (12) can be inverted to give

[
I + V 2

A

c2
(I − bb)

]−1

= γ 2
A

[
I + V 2

A

c2
bb

]
, (14)
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where we introduced the Alfvén factor

γA = 1√
1 + V 2

A
c2

. (15)

Finally, the transformation from the semirelativistic momentum to the nonrelativistic mo-
mentum becomes

ρu = γ 2
A

[
I + V 2

A

c2
bb

]
· m. (16)

2.2. MHD with Displacement Current and Charge Density

An alternative derivation leading to the semirelativistic MHD equations starts with the
nonconservative form of the nonrelativistic MHD equations but with the electric force in
the momentum equation and the displacement current in Ampére’s law being kept. A form
of this derivation was discussed by Boris [2]. In this case the governing equations are

∂ρ

∂t
+ (u · ∇)ρ + ρ(∇ · u) = 0, (17)

ρ
∂u
∂t

+ ρ(u · ∇)u + ∇ p − j × B − qE = 0, (18)

∂B
∂t

+ ∇ × E = 0, (19)

∂p

∂t
+ (u · ∇)p + γ p(∇ · u) = 0, (20)

where the charge density q , the current density j, and the electric field vector E are defined
by Gauss’s law, Ampère’s law, and Ohm’s law, respectively:

q = 1

µ0c2
∇ · E, (21)

j = 1

µ0
∇ × B − 1

µ0c2

∂E
∂t

, (22)

E = −u × B. (23)

Now the j × B term can be expressed from (22). We use the (∂E/∂t) × B = ∂(E × B)/∂t −
E × (∂B/∂t) identity and then ∂B/∂t is substituted from the induction equation (19). After
some algebra we obtain

j × B = − 1

c2

∂SA

∂t
− ∇ · PA − 1

µ0c2
E∇ · E. (24)

Substituting Eqs. (17), (21), and (24) into (18) yields the conservative form of the momentum
equation

∂

∂t

(
ρu + 1

c2
SA

)
+ ∇ · (ρuu + pI + PA) = 0, (25)

which is identical to the momentum equations in (9) and (10) that were derived from the
relativistic MHD equations.
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2.3. Divergence of the Magnetic Field

In nature ∇ · B is always zero; i.e., magnetic monopoles do not exist. Mathematically
speaking, if the ∇ · B = 0 condition is satisfied initially, it will hold forever, since the
induction equation (19) ensures that ∂(∇ · B)/∂t = 0. Many numerical discretizations of
the MHD equations, however, lead to a nonzero ∇ · B in the discretized solution due to the
truncation errors, even if the initial condition is divergence free. Other schemes enforce the
divergence-free condition in some discrete sense. Many of these schemes were described
and compared by Tóth [21].

For schemes that allow nonzero ∇ · B at the truncation error level, it is beneficial to use
a form of the MHD equations that includes the effects of magnetic monopoles. A Galilean
invariant form of the nonrelativistic MHD equations, in which the magnetic monopoles
are advected with the bulk flow, was derived by Godunov [5] and later implemented and
tested by Powell and co-workers [16, 17]. In this “8-wave” formulation, the nonrelativistic
MHD equations are written in a near conservation form, with source terms proportional to
∇ · B in the momentum, induction, and energy equations. The 8th wave corresponds to the
propagation of the magnetic monopoles, or in other words, jumps in the normal component
of the magnetic field.

In recent papers by Janhunen [7] and Dellar [3] it was shown that if one starts from the
relativistic MHD equations, which allow the existence of magnetic monopoles, while the
momentum and energy equations remain in conservation form. In the induction equation
one can introduce the same source term −u∇ · B as in the 8-wave scheme to allow for
the advection of magnetic monopoles. This set of equations is Lorentz invariant. Another
interesting alternative can be obtained by artifically diffusing the magnetic monopoles with
a source term proportional to ∇(∇ · B) in the induction equation. This can be achieved with
the method proposed by Marder [14].

Clearly, one can prescribe anything for the numerically generated monopoles, as long
as it makes the numerical scheme more stable and hopefully more accurate. All the above
ideas can be easily carried over to the semirelativistic MHD equations. In particular, the
induction equation is the same as in the nonrelativistic case; thus the same source terms can
be applied. It is a question of numerical experiments to decide which form of the source
terms make a certain discretization of the semirelativistic MHD equations behave the best.

2.4. Acceleration toward Steady State with Lowered Speed of Light

So far our aim has been to derive a set of equations that is valid in physical situations in
which VA > c. However, we also want a set of equations which has steady-state solutions
independent of the value of the speed of light, since the artificial lowering of c allows larger
time steps in the numerical simulations. This leads us to differentiate the true value of the
speed of light, c0, from the artificially lowered speed of light, c.

The flux diad (10) contains the speed of light only in the momentum equation in the term
PA. The divergence of these electric terms can be manipulated as follows:

∇ ·
[

1

µ0c2
0

(
1

2
E2 − EE

)]
= ∇ ·

[
1

µ0c2

(
1

2
E2 − EE

)]

+ 1

µ0

(
1

c2
0

− 1

c2

)
[E × (∇ × E) − E∇ · E]. (26)
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The first term on the right-hand side is the same as the left-hand side except for the reduced
speed of light. For steady-state problems, we can make use of the steady-state induction
equation, which yields ∇ × E = 0; thus the E × (∇ × E) term vanishes from the second
term on the right-hand side. In general, when the acceleration technique is applied with
c < c0, we need to solve the near conservation equation

∂W
∂t

+ (∇ · F)T = Q, (27)

where the source term is

Q = 1

µ0

(
1

c2
0

− 1

c2

)
E∇ · E (28)

in the momentum equation. This source term compensates for the change due to lowering c.
Another way of deriving (27) and (28) is to realize that the steady-state solution of the

semirelativistic MHD equations is independent of the displacement current (1/µ0c2)∂E/∂t ,
but it does depend on the charge density (1/µ0c2)∇ · E. Therefore the speed of light can
be freely reduced in Ampére’s law (22) but it must be kept at c = c0 in Gauss’s law (21).
Consequently, the (1/µ0c2)E∇ · E term from (24) and the (1/µ0c2

0)E∇ · E term from (21)
do not cancel as they did in the momentum equation (25).

2.5. Split Hydrodynamic/Electromagnetic Form

In some popular numerical methods (e.g., [4]) the hydrodynamics is treated in a flux-
based form, with the electromagnetic terms split out and treated as a source term. In this
section we consider the semirelativistic MHD equations in this formulation.

In the split hydrodynamic/electromagnetic formulation the continuity equation and Fara-
day’s law are given by (17) and (19). To derive an appropriate momentum equation we
substitute Ohm’s law (23) into Ampère’s law (22), evaluate the ∂B/∂t term from the induc-
tion equation (19), and take the cross product with B to obtain

j × B = − 1

µ0c2
(B2I − BB) · ∂u

∂t
− 1

µ0
B ×

[
∇ × B + 1

c2
(∇ × E) × u

]
. (29)

Substituting (29) into the momentum equation (18) yields

ρ

[
I + V 2

A

c2
(I − bb)

]
· ∂u
∂t

+ ρ(u · ∇)u + ∇ p

+ 1

µ0
B ×

[
∇ × B + 1

c2
(∇ × E) × u

]
− qE = 0. (30)

We find the same matrix multiplying the ∂u/∂t term as in (12), and so (30) can be multiplied
with the inverse matrix (14) to obtain the split hydrodynamic/electromagnetic form of the
MHD momentum equation,

∂

∂t
(ρu) + ∇ · (ρuu + pI) = γ 2

A
V 2

A

c2
(I − b b) · [ρ(u · ∇)u + ∇ p]

− γ 2
A

1

µ0
B ×

[
∇ × B − 1

c2
u × (∇ × E) − 1

c2
0

u∇ · E
]
, (31)



SEMIRELATIVISTIC MHD 183

where the continuity equation (17) was used to convert from the time derivative of velocity
to the time derivative of momentum. We note that the terms on the right-hand side are all
perpendicular to the magnetic-field direction. This point will be discussed later.

The split hydrodynamic/electromagnetic form of the energy equation can be obtained by
combining Eqs. (31) and (20) to give

∂ε

∂t
+ ∇ · [(ε + p)u] = γ 2

A
V 2

A

c2
(I − bb) : [ρu(u · ∇)u + u∇ p]

− γ 2
A

1

µ0
(u × B) · (∇ × B), (32)

where the : symbol means the double dot product of the matrices, and the hydrodynamic
energy density ε is defined as

ε = 1

2
ρu2 + p

γ − 1
. (33)

We note that in Eqs. (31) and (32) no additional simplification has been used beyond the
semirelativistic approximation.

2.6. Primitive-Variable Form

In the primitive-variable formulation (17) through (19) of the semirelativistic MHD equa-
tions only the momentum equation is modified due to the displacement curent. Multiplying
Eq. (30) with the inverse matrix (14) yields the following equation for the evolution of
plasma flow velocity:

∂u
∂t

+ γ 2
A

(
I + V 2

A

c2
b b

)
·
[
(u · ∇)u + 1

ρ
∇ p

]

+ γ 2
A

1

µ0ρ
B ×

[
∇ × B − 1

c2
u × (∇ × E) − 1

c2
0

u∇ · E
]
= 0. (34)

The primitive-variable set of the semirelativistic MHD equations are (17), (34), (20), and
(19), together with Ohm’s law (23).

2.7. The Semirelativistic Momentum Equation

In this section we examine some interesting features of the semirelativistic momentum
equation (34). We note, again, that in the primitive-variable formulation this is the only
equation modified by the semirelativistic effects.

Parallel and perpendicular components. Equation (34) can be examined by considering
the parallel and perpendicular components, with respect to the magnetic field, separately.
Let us start by taking the scalar product of (34) with b,(

∂u

∂t

)
‖
+

[
(u · ∇)u + 1

ρ
∇ p

]
‖

= 0, (35)

where the subscript ‖ denotes the magnetic-field-aligned component. This equation means
that the plasma transport along the magnetic field line is completely hydrodynamic. The
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magnetic field does not influence this field-aligned transport and the semirelativistic ap-
proximation results in no modification whatsoever.

The situation is completely different in the perpendicular direction. This can be seen by
multiplying Eq. (34) with the matrix (I − bb), which gives

(
∂u
∂t

)
⊥

+ γ 2
A

[
(u · ∇)u + 1

ρ
∇ p

]
⊥

+ γ 2
A

µ0ρ
B ×

[
∇ × B − 1

c2
u × (∇ × E) − 1

c2
0

u∇ · E
]
= 0, (36)

where the subscript ⊥ denotes the component perpendicular to the magnetic field. This
equation shows that the time rate of change of the flow velocity in the perpendicular direction
is reduced by a factor of γ −2

A = 1 + V 2
A/c2. This can be interpreted as a consequence of an

increase of the “generalized” mass density in the perpendicular direction by this factor. In
effect, it is increasingly difficult to change the perpendicular velocity as the Alfvén speed
increases, and as VA → ∞ all transverse oscillations become impossible.

Steady-state solution. It is expected that under steady-state conditions the semirela-
tivistic MHD equations revert to the nonrelativistic case, since the displacement current is
essentially the time rate of change of the electric field vector. The parallel component of the
primitive-variable momentum equation has no semirelativistic terms, so the steady-state
parallel velocity is obviously the same in both cases. Under steady-state conditions the
perpendicular component (36) becomes

[ρ(u · ∇)u + ∇ p]⊥ + 1

µ0
B × (∇ × B) − 1

µ0c2
0

E∇ · E = 0, (37)

because one can use Eq. (19) to show that u × (∇ × E) vanishes in steady state. Equation
(37) is the same as the perpendicular component of the steady-state nonrelativistic momen-
tum equation. This means that steady-state solutions of the nonrelativistic and semirela-
tivistic MHD equations must be identical at the level of the partial-differential equations.
Discrete solutions of the two forms can differ slightly, since discretization of the two forms
will lead to different amounts of discretization error.

2.8. Approximate Equations

Next we examine two simplified approximations to the semirelativistic MHD equation.
Neither of the simplifications is valid for truly semirelativistic problems, where VA > c.
The first simplified version proposed by Boris [2] can be used to obtain steady-state so-
lutions of the nonrelativistic MHD equations with accelerated convergence. The second
approximation has been used in practical simulations to overcome numerical difficulties,
but the effects of the approximations even on the steady-state solution are not clear.

The Boris simplification. First we discuss an approximation that was put forward by
Boris in his original paper [2]. Boris suggested neglecting the off-diagonal term (bi b j ) in
the time derivative of the semirelativistic momentum, as well as the electric field contri-
butions to the electromagnetic energy and pressure tensor. At the same time he used the
nonconservative energy equation given by Eq. (20). This combination leads to a set of
equations which cannot be expressed in conservation form. Here we consider a somewhat
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modified approach, in which we use the conservative form of the semirelativistic energy
equation but neglect the electric field contribution to the conserved energy density. This
approximation results in a conservative state vector which has increased inertia compared
to the nonrelativistic approximation. We note that while this approximation has some very
attractive properties, the entropy function loses its usual physical meaning. In this approx-
imation the state vector is modified but the flux diad becomes identical to the nonrelativi-
stic case:

Ws =




ρ(
1 + V 2

A
c2

)
ρu

B
1
2ρu2 + p

γ − 1 + 1
2µ0

B2


 , (38)

Fs =




ρu

ρuu + pI + 1
2µ0

B2I − 1
µ0

BB

uB − Bu(
1
2ρu2 + γ p

γ − 1 + 1
µ0

B2
)
u − 1

µ0
(u · B)B




T

. (39)

The only difference from the nonrelativistic MHD equations is the 1 + V 2
A/c2 factor in

front of ρu in the vector of conservative variables W . Since the stationary solution of
∂W/∂t + ∇ · F = 0 only depends on the fluxes F, the steady-state solution is independent
of the speed of light.

Reduced j × B force. An even simpler approximation can be obtained with the help
of Eq. (34). One can neglect the electric field contributions to the j × B force and the
relativistic reduction of the hydrodynamic forces to obtain the following approximation to
the momentum equation:

∂u
∂t

+ (u · ∇)u + 1

ρ
∇ p + γ 2

A
1

µ0ρ
B × (∇ × B) = 0. (40)

This equation is the “classic” MHD momentum equation with a reduced j × B force. The
reduction resolves the stiffnes of the equation, since the modified j × B remains bounded
as the magnetic field strength approaches infinity.

This approximation is very convenient and easy to implement in numerical codes. It is
extensively used in global magnetospheric codes to avoid unphysical Alfvén speed (VA > c)
and for increasing the explicit time step (with reduced values of c) [13]. We note, however,
that (40) suffers from two shortcomings: it cannot be put in a conservation form, which would
be important in obtaining discontinuous solutions, and the steady-state solution depends on
the value of the reduced speed of light.

3. WAVE SPEEDS

In this section we determine how the MHD wave speeds are modified by the semirela-
tivistic correction. Our starting point is the primitive-variable form of the semirelativistic



186 GOMBOSI ET AL.

MHD equations (17), (34), (20), and (19), together with (23). The use of the primitive-
variable form leads to a somewhat simpler eigenvalue problem than the one derived from
the conservative form, thereby simplifying the analysis. We will also drop the (1/c2

0)u∇ · E
term from (34), since it is negligible relative to ∇ × B, which is a factor (c0/u)2 larger.
Dropping this term makes the eigenvalue problem much easier to treat analytically. Note
that while u � c0 always holds in the semirelativistic MHD limit, the u � c condition may
not be true when the speed of light is artificially reduced. Finally, we add a −u∇ · B source
term to the induction equation (19) so that the divergence wave has a nonzero wave speed.
This source term removes the singularity of the matrix, but otherwise it has no influence on
the other waves, which have no jump in the normal component of the magnetic field.

3.1. Characteristic Matrix of Semirelativistic MHD

The primitive-variable semirelativistic MHD equations can be written in a general quasi-
linear form

∂U
∂t

+ Mx
∂U
∂x

+ My
∂U
∂y

+ Mz
∂U
∂z

= 0, (41)

where U is the vector of primitive variables (ρ, u, B, p)T. If the eigenvalues of Mx , My , and
Mz are all real (they need not be distinct and are typically not in systems of conservation
laws), the system is hyperbolic. The eigenvalues of the matrices Mi represent the wave
speeds in the given direction.

The characteristic matrix of the semirelativistic MHD equations in direction x is

Mx =




ux ρ 0 0 0 0 0 0

0 γ 2
Aux + χxx χxy χxz ηxx ηxy ηxz κx

0 χyx γ 2
Aux + χyy χyz ηyx ηyy ηyz κy

0 χzx χzy γ 2
Aux + χzz ηzx ηzy ηzz κz

0 0 0 0 ux 0 0 0
0 By −Bx 0 0 ux 0 0

0 Bz 0 −Bx 0 0 ux 0

0 ρa2 0 0 0 0 0 ux




, (42)

where

χ = γ 2
A

µ0ρc2




2B2
x ux − B2ux 2Bx Byux 2Bx Bzux

2Bx Byux + Bz Ex 2B2
y ux − B2ux + Bz Ey 2By Bzux + Bz Ez

2Bx Bzux − By Ex 2By Bzux − By Ey 2B2
z ux − B2ux − By Ez


,

η = γ 2
A

µ0ρc2




ux u · B − u2
x Bx (c2 − u2

x )By (c2 − u2
x )Bz

−ux uy Bx ux u · B − ux uy By − c2 Bx ux uy Bz

−ux uz Bx −ux uz By ux u · B − ux uz Bz − c2 Bx


,

κ = γ 2
A

ρ

(
1 + V 2

Ax

c2 ; VAx VAy

c2 ; VAx VAz

c2

)T

,

(43)
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and VA,x , VA,y, and VA,z are the components of the nonrelativistic Alfvén speed, eg., VA,x =
Bx/

√
µ0ρ. The wave speeds, i.e., the eigenvalues of the Mx matrix (42), are the roots of

the characteristic equation

(λ − ux )
2 P2(λ)P4(λ) = 0, (44)

where P2 and P4 are second- and fourth-order polynomials

P2 = λ(λ − ux ) + γ 2
A

[
λu‖bx

V 2
A

c2
− ux (λ − ux ) − V 2

Ab2
x

]
, (45)

P4 = [(λ − ux )
4 − a2(λ − ux )

2] − (c2 − λ2)
V 2

A

c2

[
(λ − ux )

2 − a2b2
x

]
, (46)

where u‖ = u · b. Two of the roots of Eq. (44) are trivial:

λ1,2 = ux . (47)

These eigenvalues describe the entropy wave and the ∇ · B wave [19] and are not modified
by the semirelativistic MHD approximation. The ∇ · B wave propagates the jump in the
normal component of the magnetic field. The interpretation of this wave has been extensively
discussed by our group [16, 17, 19].

3.2. Alfvén Waves

The two roots of P2 correspond to the Alfén waves in the semirelativistic approximation,

λ3,4 = γ 2
A(ux + vE,x ) ±

√
γ 2

A

(
V 2

A,x − u2
x

) + γ 4
A(ux + vE,x )2, (48)

where we have introduced the “Poynting velocity” as

vE = 1

2ρc2
SA = 1

2µ0ρc2
(E × B) = V 2

A

2c2
u⊥, (49)

where u⊥ = u − u‖ b.
In the semirelativistic limit the Alfvén speeds are quite different than they are in classical

MHD. One of the most striking features of these wave speeds is that they are not symmet-
ric around the normal flow velocity component, ux . This is a major difference from the
classical nonrelativistic case, in which all wave speeds are symmetric with respect to ux .
This difference occurs because the semirelativistic MHD equations show a mixed trans-
lational invariance: the hydrodynamic part is Galilean invariant, while the electrodynamic
part is Lorentz invariant. The end result is that the semirelativistic wave speeds show nei-
ther Galilean nor Lorentz invariance. It is interesting to note that the semirelativistic Alfvén
waves symmetrically propagate forward and backward with respect to the modified bulk
speed u′ = γ 2

A(u + vE).
It is instructive to investigate the Alfvén speeds in various limits. First we take the

nonrelativistic limit VA � c, γA → 1, vE → 0 and obtain the classical MHD Alfvén speed

lim
VA�c

λ3,4 = ux ± VA,x , (50)

as expected.
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Next we examine the semirelativistic Alfvén speed in the plasma frame, ux = 0, vE = 0:

lim
ux →0

λ3,4 = ±γAVA,x . (51)

This is identical to the Alfvén speeds derived by Boris [2].
Other interesting cases are when the magnetic field is perpendicular to (bx = 0) or parallel

with (bx = 1) the propagation direction:

lim
bx →0

λ3 = ux and lim
bx →0

λ4 = γ 2
Aux , (52)

lim
bx →1

λ3,4 = γ 2
Aux ± γAVA

√
1 − γ 2

A
u2

x

c2
. (53)

Another very important and interesting limit is when the classical Alfvén speed approaches
infinity, VA → ∞. In this case γA → 0 but γAVA → c and the eigenvalues become

lim
VA→∞

λ3,4 = 1

2
u⊥,x ±

√
c2b2

x + 1

4
u2

⊥,x . (54)

It is easy to see that the maximum value of the Alfvén speed is limited by c + u in any
frame of reference.

3.3. Fast and Slow Magnetosonic Waves

The fast and slow magnetosonic speeds are the roots of the P4 = 0 equation. While the
P4 polynomial looks deceptively simple, its roots are very complicated. In order to explore
the physics of these modified waves we first examine several simplified cases.

3.3.1. Special Cases

Zero flow velocity. Let us start the analysis of the magnetosonic waves by considering
the eigenvalues in the plasma frame, in which u = 0. In this case the appropriate eigenvalues
simplify to

lim
ux →0

λ5,6 = ± 1√
2

√
γ 2

A

(
V 2

A + ā2
) −

√
γ 4

A

(
V 2

A + ā2
)2 − 4γ 2

Aa2V 2
A,x , (55)

lim
ux →0

λ7,8 = ± 1√
2

√
γ 2

A

(
V 2

A + ā2
) +

√
γ 4

A

(
V 2

A + ā2
)2 − 4γ 2

Aa2V 2
A,x , (56)

where

ā2 = a2

(
1 + V 2

A,x

c2

)
. (57)

These expressions clearly indicate that λ5 and λ6 represent the slow magnetosonic waves,
while λ7 and λ8 describe the fast ones. We note that these simplified wave speeds are the
same as the ones published by Boris [2].
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Perpendicular magnetic field. Another interesting special case is when the magnetic
field is perpendicular to the x direction, i.e., VA,x = 0 and bx = 0, and the slow and the fast
wave speeds become

lim
bx →0

λ5,6 = ux , (58)

lim
bx →0

λ7,8 = γ 2
Aux ± γA

√
a2 + V 2

A

(
1 − γ 2

A
u2

x

c2

)
. (59)

Parallel magnetic field. The opposite limiting case is when the magnetic field is parallel
to the x direction, i.e., bx = 1 and by = bz = 0. In this case the characteristic wave speeds
become,

lim
bx →1

λ5,6 = ux ± a, (60)

lim
bx →1

λ7,8 = γ 2
Aux ± γAVA

√
1 − γ 2

A
u2

x

c2
. (61)

Infinite classical Alfvén speed. A very important limiting case is when the “classical”
Alfvén speed approaches infinity, VA → ∞, and the fast and slow magnetosonic speeds
approach

lim
VA→∞

λ5,6 = ux ± abx , (62)

lim
VA→∞

λ7,8 = ±c. (63)

This is a physically very interesting result. It is obvious that the fast magnetosonic speed is
limited by the speed of light in any frame of reference. The slow speed is limited by u + a.

Small classical Alfvén speed. Next we return to the P4 polynomial (46). We note that the
second bracketed term is multiplied by V 2

A/c2, a quantity that is small in the nonrelativistic
Alfvén speed limit. Neglecting the term proportional to V 2

A/c2 we recover the characteristic
polynomial of the nonrelativistic magnetosonic speeds,

P4 = (λ − ux )
4 − (

V 2
A + a2

)
(λ − ux )

2 + a2V 2
A,x , (64)

which has the well-known roots

lim
VA�c

λ5,6 = ux ± 1√
2

√(
a2 + V 2

A

) −
√(

a2 + V 2
A

)2 − 4a2V 2
A,x , (65)

lim
VA�c

λ7,8 = ux ± 1√
2

√(
a2 + V 2

A

) +
√(

a2 + V 2
A

)2 − 4a2V 2
A,x . (66)

3.3.2. Approximate Magnetosonic Speeds

Since quartic equations have analytic solutions, it is possible to obtain closed formulas
for the slow and fast magnetosonic speeds. However, these formulas are quite complicated
and it is more practical to find the roots of the P4 polynomial numerically. Here we explore
an appoximate solution that is generally valid within a few percent.
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A proposed approximate solution of the P4 = 0 equation is given by the slow and fast
magnetosonic wave speeds

λ5,6 ≈ ux ± c̄s = ux ± 1√
2

√
γ 2

A

(
ā2 + V̄ 2

A

) −
√

γ 4
A

(
ā2 + V̄ 2

A

)2 − 4γ 2
Aa2V̄ 2

A,x , (67)

λ7,8 ≈ γ 2
Aux ± c̄ f = γ 2

Aux ± 1√
2

√
γ 2

A

(
ā2 + V̄ 2

A

) +
√

γ 4
A

(
ā2 + V̄ 2

A

)2 − 4γ 2
Aa2V̄ 2

A,x , (68)

where c̄s and c̄ f are the modified slow and fast magnetosonic speeds, ā is defined in (57),
and we introduce

V̄ 2
A = V 2

A

(
1 − γ 2

A
u2

x

c2

)
, (69)

V̄ 2
A,x = V 2

A,x

(
1 − γ 2

A
u2

x

c2

)
. (70)

It is interesting to note that the slow mode λ5,6 eigenvalues are symmetric around ux , while
the fast mode λ7,8 are symmetric with respect to γ 2

Aux . In extreme cases, when ux is the
same order as c, one of the “slow” waves can actually move faster in the laboratory frame
than the “fast” wave.

Expressions (67) and (68) have all the right limits. When ux → 0 they simplify to (55)
and (56), and for bx → 0 they simplify to (58) and (59). In the bx → 1 limit a2 = γ 2

Aā2

and therefore expressions (67) and (68) simplify to (60) and (61). In the relativistic Alfvén
speed limit γ 2

A → 0, but γ 2
AV̄ 2

A → c2 and γ 2
Aā2 → a2b2

x , and we recover (62) and (63). In the
classical MHD limit c → ∞, γA → 1, V̄A → VA, V̄A,x → VA,x , and ā → a; thus we obtain
(65) and (66). We conclude that expressions (67) and (68) represent a good approximation
to the semirelativistic slow and fast magnetosonic wave speeds.

To have a better feeling for the accuracy of the proposed approximate solution we calculate
the difference between the P4 polynomial and the approximate polynomial corresponding
to the approximate solutions (67) and (68):

P̄4 = P4 − (λ − ux − c̄s)
(
λ − ux + c̄s)

(
λ − γ 2

Aux − c̄ f
)(

λ − γ 2
Aux + c̄ f

)
= γ 2

A
V 2

A

c2
2ux

(
c̄2

s − a2b2
x

)[
λ − 1

2
ux

(
1 + γ 2

A

)]
. (71)

In general, this residual is quite small because c̄2
s ≈ a2b2

x is a reasonably good approximation.
Numerical experiments were carried out to check the accuracy of expressions (67) and

(68). It was found that these expressions are accurate to within about 2% for the parame-
ter range 0 < a < c/3, 0 < ux < c/3, and 0 < VA < 3c. In the parameter range c/3 < a < c,
c/3 < ux < c, and 0 < VA < 3c (where the nonrelativistic hydrodynamics is no longer ap-
plicable) the approximation is still valid to within ∼15%.

4. STABILITY

In this section we examine the linear stability for the semirelativistic MHD equations.
The equations are linearly stable if the wave speeds are all real. We check this condition for
two cases: for a reduced speed of light c � c0 and for a true speed of light c = c0.
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4.1. Stability with Lowered Speed of Light

From inspection of the modified Alfvén wave speed (48), it is not at all clear that the
expression

D = γ 2
A

(
V 2

A,x − u2
x

) + γ 4
A(ux + vE,x )

2 (72)

under the square root is always positive. Indeed, if D < 0, one of the Alfvén modes becomes
unstable, and its amplitude will grow exponentially. This means that the semirelativistic
MHD equations can become unstable. Let us investigate the stability criteria.

First (72) is multiplied by γ −4
A , and γA and vE,x are substituted from (15) and (49) to

yield

D1 = Dγ −4
A =

(
1 + V 2

A

c2

)(
V 2

Ab2
x − u2

x

) +
(

ux + V 2
A

2c2
u⊥,x

)2

. (73)

We can now expand inside the parentheses and multiply by the positive c2/V 2
A to obtain

D2 = Dγ −4
A

c2

V 2
A

= c2b2
x + V 2

Ab2
x − u2

x + ux u⊥,x + V 2
A

4c2
u2

⊥,x . (74)

If we choose a coordinate system in which Bz = 0 then

u⊥,x = (u × b)zby = uby sin δ, (75)

where δ is the angle between the velocity and magnetic field vectors in the x–y plane. We
can take uz = 0 since it does not occur in the equations. We introduce the angle α between
the x direction and u and the angle β between the x direction and b, so that ux = u cos α,
bx = cos β, by = sin β, and δ = α − β, Now (74) can be rewritten as

D2 =(
c2 + V 2

A

)
cos2 β − u2

[
cos2 α + cos α sin β sin(α − β) − V 2

A

4c2
sin2 β sin2 δ

]
. (76)

This expression can be further transformed by expanding the sin(α − β) term to give

D2 =(
c2 + V 2

A − u2 cos2 α
)

cos2 β + u2

4

(
V 2

A

c2
sin2 δ sin2 β − sin 2α sin 2β

)
. (77)

If VA/c is large then the coefficient of V 2
A/c2 must be small at the minimum of D2; i.e., δ

and/or β must be small. In either case it can be easily shown that D2 remains positive as
long as

u2 < c2 + V 2
A. (78)

This condition is easy to meet: one should simply make sure that the artificially lowered c
remains above the maximum of |u|.

Now we return to the more challenging small VA/c case. We minimize (77) in terms of
β, with the approximation that α = δ − β is independent of β. This approximation will turn
out to be very reasonable. The minimum of D2 is at

tan 2βmin = − (u2/2) sin 2α

c2 + V 2
A − u2 cos2 α − (

V 2
Au2

/
4c2

)
sin2 δ

, (79)
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where we should take the solution at

βmin ≈ π

2
− u2

4c2
sin 2α. (80)

Here we assumed that both VA and u are much less than c, thus the denominator of (79) is
dominated by the very first term c2, and tan 2β ≈ 2β − π . (The tan 2β ≈ 2β solution yields
the maximum for D2). Clearly, βmin must be very close to π/2, so we can take α = δ +
π/2, sin β ≈ 1, and cos β ≈ (u2/4c2) sin 2δ. Substituting all this back into (77) results in

min D2 ≈ u2

4c2
sin2 δ

(
V 2

A − u2 cos2 δ
)= u2

⊥
4c2

(
V 2

A − u2
‖
)

(81)

which is positive if

u‖ < VA (82)

Interestingly, this stability condition does not depend on c, i.e., any flow that has a speed
parallel to the magnetic field exceeding the nonrelativistic Alfvén speed is unstable in the
semirelativistic approximation if VA � c. This looks like a contradiction to the well known
fact that the nonrelativistic Alfvén speed is always real, which we should obtain as the c → ∞
limit of the semirelativistic solution. The explanation is the following: in the c → ∞ limit
both the nonrelativistic and semirelativistic Alfvén speeds approach zero for the propagation
direction at an angle β → π/2 with the magnetic field. The nonrelativistic solution, however,
converges to 0 on the real axis, while the semirelativistic solution converges to 0 on the
complex plane with a small imaginary part. We can actually calculate the real and imaginary
parts of the most unstable Alfvén mode in the VA < u‖ � c limit:

�(λ3,4) ≈ u⊥ (83)

�(λ3,4) ≈ ±u⊥VA

2c2

√
u2

‖ − V 2
A. (84)

The imaginary part is clearly quite small and it is always smaller than the real part.
We have explored numerically the parameter range in which VA is the same order as c.

Figure 1 shows the numerically obtained maximum stable field-aligned flow speed u‖,max as
a function of the Alfvén speed 0 < VA/c < 1 and the angle 0 < δ < 90◦. The approximation
u‖,max ≈ VA from (82) is a lower bound to the numerically obtained values. It is an extremely
good approximation in the lower left part of the figure, where the contour lines are vertical.
Where the contour lines bend to the left, u‖,max > VA, while in the upper right black triangular
area u‖,max = ∞; i.e., the equations are stable for any u‖.

We conclude that the near conservation form of the semirelativistic MHD equations
are only conditionally stable when the speed of light is artificially lowered. In the large
and small Alfvén speed limits sufficient stability criteria are given by (78) and (82). The
acceleration technique should be applied when VA is large, so that the magnetosonic and
Alfvén speeds are reduced by the artificial lowering of the speed of light. In this limit the
equations are stable as long as u < c. In fact, there is not much point in lowering c below
u, since eventually the time step will become limited by the slow wave, which propagates
at speed u ± a parallel to the field lines according to (62).
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FIG. 1. The maximum parallel velocity u‖,max as a function of the non-relativistic Alfvén speed VA and the
angle between the velocity and magnetic field vectors δ (in degrees). The approximate formula u‖,max = VA is
almost exact where the contour lines are straight. In the upper right region u‖,max = ∞, i.e., the solution is stable
for any value of u‖.

Difficulties arise only if in some parts of the computational domain the Alfvén speed
is large (VA > c), while in other parts it is small (VA � c) and the field-aligned flow can
become super-Alfvénic (u‖ > VA). Even under these circumstances it is possible that the
numerical solution remains stable, because the weak instability might be suppressed by the
numerical diffusion of the scheme. In any case, one can always switch to the nonrelativistic
MHD equations in parts of the computational domain where VA is small, and where the
acceleration technique does not have much use anyway. This hybrid approach should still
yield correct steady-state solutions.

Finally, we note that the approximate formulas (67) and (68) for the slow and fast waves
always yield real wave speeds as long as 1 − γ 2

Au2
x/c2 > 0 in (69) and (70), which gives

the same condition as (78). This can be easily shown by substituting Eq. (57) into the
expressions under the inner square roots of (67) and (68).

4.2. Stability without Lowering the Speed of Light

Although we could not solve the eigenvalue problem in its full generality for the c = c0

case, i. e., when there is no artificial lowering of the speed of light and the source term
Q = 0, our partial analytic and numerical results suggest that in this case all eigenvalues are
real as long as u < c. In other words, the semirelativistic MHD equations with the true value
of the speed to light are stable for u < c. We have proved this rigorously for the case when
the unperturbed vectors B and u and the x axis are coplanar. In this case we may choose a
coordinate system in which Bz = uz = 0. The fast and slow wave speeds are then the same
as above, because these waves do not produce Bz and uz ; thus Ex = 0, which means that the
source term Q ∝ ∇ · E = 0 does not play any role. The Alfvén waves, on the other hand,
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have new eigenvalues

λ′
3,4 = ux − vs,x ±

√
γ 2

AV 2
A,x

(
1 − u2

c2

)
+ v2

s,x , (85)

where

vs = γ 2
A

V 2
A

c2
u‖b. (86)

Clearly, the eigenvalues λ′
3,4 are real as long as u < c.

5. WAVE SPEEDS AND STABILITY OF THE SIMPLIFIED EQUATIONS

In this section we examine the eigenvalues and the stability of the two simplified approx-
imations to the semirelativistic MHD equations, which were discussed in Section 2.8.

5.1. The Boris simplification

In this case the entropy and ∇ · B wave speeds remain unchanged (λ1,2 = ux ). The Alfvén
waves propagate with speeds given by

λs
3,4 = 1

2

[(
1 + γ 2

A

)
ux ±

√(
1 − γ 2

A

)2
u2

x + 4γ 2
AV 2

A,x

]
. (87)

We note that these wave speeds are not symmetric with respect to the flow speed. This effect
is due to the inclusion of the Poynting vector in the conserved momentum and has already
been discussed. The expression under the square root is always positive, since it is the sum
of two squares, which implies that the Alfvén waves are stable in this case. In the limit of
VA � c it can be shown that |λs

3,4| < |ux | + c.
The magnetosonic wave speeds can only be expressed by very long and complicated

formulas and in practice they can be obtained by numerically solving the roots of a
fourth-order polynomial. For the special case of u = 0, i.e., in the plasma frame, the wave
speeds are

cs
fast,slow = γA√

2

√
a2 + V 2

A ±
√(

a2 + V 2
A

)2 − 4a2V 2
A,x , (88)

which are simply the classical magnetosonic speeds multiplied by γA; thus, at least in
the plasma frame, the magnetosonic waves of the simplified equations are always stable.
The fast speed is limited by c for VA � c, since γAVA → c as VA → ∞. For the numerical
schemes we need an approximate formula for the maximum propagation speed. We adopt
|ux | + cS

fast as a good upper estimate.
We note that Boris [2] published wave speeds for the unsimplified semirelativistic equa-

tions in the plasma frame; these are different from the wave speeds of the simplified equations
discussed here.
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5.2. Reduced j × B Force

In this case the entropy and ∇ · B wave speeds again remain unchanged (λ1,2 = ux ). The
Alfvén and magnetosonic waves propagate with speeds given by

λR
3,4 = ux ± γAVA,x , (89)

λR
5,6,7,8 = ux ± 1√

2

√
a2 + γ 2

AV 2
A ±

√(
a2 + γ 2

AV 2
A

)2 − 4a2γ 2
AV 2

A, x . (90)

All the wave speeds are guaranteed to be real, since VA,x ≤ VA. In the VA → ∞ limit the
fast speeds are u ± √

a2 + c2 perpendicular to the magnetic field.
We conclude that both simplified approximations lead to stable equations, and the Boris

simplification also preserves the steady-state solution of nonrelativistic MHD.

6. SPLITTING THE MAGNETIC FIELD

For problems in which strong externally imposed magnetic fields are present, accuracy
can be increased by solving for the deviation of the magnetic field from this prescribed com-
ponent. For instance, in magnetosphere-type simulations a strong dipole-like magnetic field
dominates the solution near the body. Solving for the deviation B1 from the embedded field
B0 is inherently more accurate than solving for the full magnetic field vector B = B0 + B1.
This approach was first suggested by Ogino and Walker [15], applied to Godunov-type
schemes by Tanaka [20], and later employed by our group [17]. Here we generalize it to
semirelativistic MHD.

The full magnetic field vector B can be written as

B = B0 + B1, (91)

where B0 is given analytically and thus ∇ · B0 = 0, while B1 is calculated by the numerical
scheme. Note that B1 is not necessarily small relative to B0. We also introduce the non-
relativistic current density j0 = (1/µ0)∇ × B0. The splitting is most important when the
equations are solved in a (near) conservation form, since the total density ε + eA can be
completely dominated by the magnetic energy B2

0/(2µ0). When the pressure is calculated
from the total energy density, it can easily become negative, as we take difference of two
huge numbers to obtain a small one. This problem can be mitigated by rewriting the energy
equation in terms of the modified total energy density

e1 = ε + 1

2µ0

(
B2

1 + 1

c2
E2

)
. (92)

Note that the electric energy still contains contribution from B0, but that is reduced by the
factor (1/c2). With these definitions the near conservation form of the semirelativistic MHD
equations (27) can be rewritten as

∂

∂t
ρ + ∇ · (ρu) = 0, (93)

∂

∂t

(
ρu + 1

c2
SA

)
+ ∇ · [ρuu + Ip + PA,1] = Q + j0 × B0, (94)
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∂

∂t
B1 + ∇ · [uB − Bu] = ∂B0

∂t
, (95)

∂

∂t
e1 + ∇ ·

[
u
(

1

2
ρu2 + γ p

γ − 1

)
+ 1

µ0
E × B1

]
= −B1 · ∂B0

∂t
+ E · j0, (96)

where

PA,1 = 1

µ0

[
I
(

1

2
B2

1 + B1 · B0 + 1

2c2
E2

)
− B1B1 − B1B0 − B0B1

]
. (97)

The splitting did not modify the continuity equation. In the momentum equation the domi-
nant B2

0 I and B0B0 terms are moved into the source term j0 × B0, which can be calculated
analytically, and it is identically zero if B0 is a force-free field. The induction equation is
modified in a trivial way, by moving the time derivative of B0 to the right-hand side. Again,
this term can be calculated analytically, and in the case of a stationary B0 field, it vanishes.
The split energy equation is obtained after quite some algebra. Most of the dominant B2

0

and E × B0 terms are eliminated, but the remaining source terms B1 · ∂B0/∂t and E · j0

contain the numerically calculated B1 and u quantities. In case of a potential (j0 = 0) and/or
stationary B0 field one or both energy source terms can be eliminated.

One may add the source terms involving ∇ · B to the split momentum, induction, and/or
energy equations (94)–(96) if the numerical scheme does not keep ∇ · B exactly zero. Of
course, ∇ · B = ∇ · B1, since the analytic B0 field must be divergence free by definition.

7. NUMERICAL TESTS

7.1. Implementation

In our code, BATS-R-US [17], the near conservation form (27) of the semirelativistic
MHD equations is implemented with the state vector (9), flux diad (10), and source (28).
The main steps of the algorithm are;

1. Determine time step �t based on the approximate wave speeds (67) and (68).
2. Calculate limited slopes of the conservative variables (9).
3. Obtain left and right states at the cell interfaces.
4. Transform interface states to primitive variables (16).
5. Calculate physical fluxes at cell interfaces (10).
6. Add numerical fluxes based on the wave speeds (67) and (68).
7. Calculate source terms at cell centers (28).
8. Add fluxes and sources to the conservative variables at cell centers.

The only nontrivial modification of an existing nonrelativistic MHD code to the semirela-
tivistic equations involves the modification of the numerical fluxes. Currently the semirelati-
vistic MHD equations are discretized with the second-order Rusanov (TVD Lax–Friedrichs)
and the second-order HLL Linde [12] schemes in BATS-R-US. These schemes only require
the maximum propagation speed (68). Applying the Roe-type approximate Riemann solver
poses a more difficult problem, because it requires the eigenvectors of the characteristic
matrix (42), which are very complicated expressions. We note that the evaluation of the
source term in (28) requires the use of slope limiters to obtain ∇ · E, which shows that this
term can be very important.
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In certain simulations it is difficult to maintain positivity of pressure, because it is cal-
culated from the total energy density ε + eA which can be dominated by the kinetic and
electromagnetic terms. Even a relatively small truncation error may lead to a negative pres-
sure. There are several ways to improve the situation. First, we calculate pressure rather
than total energy at the cell interfaces; thus the limited slopes are applied on pressure. This
ensures that the cell-interface pressure is always positive. Second, we have the option of
updating p with the nonconservative equation (20) in certain parts of the computational
domain. Using the conservative energy equation is only important for obtaining correct
jump conditions across shock waves. One can use some dynamic switch [1] to identify
shock waves, or in some problems one can use simple geometrical conditions to select the
appropriate energy equation.

In all time-accurate tests, a spatially and temporally second-order high-resolution MUSCL
type TVD scheme is used with a Lax–Friedrichs flux function and a monotonized central
(Woodward) limiter (see [22] for a detailed description). The 8-wave scheme is used to con-
trol the numerical error in ∇ · B in the multidimensional simulations. In one-dimensional
simulations ∇ · B = 0 is automatically satisfied. The explicit time steps are limited by the
Courant–Friedrich–Lewy (CFL) stability condition. The maximum Courant number is set
to C = 0.9. We use SI units; thus the true speed of light is c0 = 3 × 108 m/s.

7.2. Propagation of Alfvén Waves

Our first numerical test involves the propagation of Alfvén waves. The intial condition
is ρ = 1, ux = 0.5, uy = 0, p = 0.1, Bx = By = 1, and Bz = 0, with uz = 0.01 for x < 0 and
uz = −0.01 for x > 0. The adiabatic index is γ = 2 and the magnetic units are normalized
such that µ0 = 1. The reduced speed of light is set to c = 0.9, which is below the Alfvén
speed VA = √

2 but is above the flow speed u = 0.5. The −400 < x < 400 domain is resolved
with 800 grid cells.

Figure 2 shows the solution at time t = 200. The left- and right-propagating Alfvén waves
are at x ≈ −57.4 and 150.6 in perfect agreement with the analytic predictions based on (48).
These values should be compared with locations of the nonrelativistic Alfvén waves, which
would propagate at speeds ux ± VA,x = 0.5 ± 1, so they would be at x = −100 and 300 at
time t = 200. The semirelativistic approximation reduced the Alfvén speed below c in an
asymmetric fashion. The locations of the left- and right-going waves are symmetric around
γ 2

A(ux + vE )t ≈ 46.6 rather than the nonrelativistic ux t = 100. Also note that the original
discontinuity in uz was symmetric around 0, but the two waves carry different jumps in uz .
This asymmetry is also due to the non-Galilean invariance of the semirelativistic equations.

Table I presents numerical values of the left- and right-running Alfvén speeds for the one-
dimensional numerical test discussed in this Section. The four columns represent Alfvén
speeds calculated using the full semirelativistic MHD equations (Eq. (48)), the simplified

TABLE I

Comparison of Alfvén Speeds

Wave Semirelativistic MHD Simplified Reduced j × B Nonrelativistic MHD

Left −0.2869 −0.2434 −0.0366 −0.5
Right +0.7529 +0.8874 +1.0366 +1.5
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FIG. 2. The z components of velocity and magnetic field in the Alfvén wave propagation test at time t = 200.
The × symbols show where the waves are expected to be based on the analytic formula (48).

set of equations given by Eqs. (38) and (39) (the solution is given by (87), the reduced j × B
approximation given by Eq. (89), and the nonrelativistic speeds ux ± VA,x , respectively.

7.3. Unstable Alfvén Modes

We also simulated an unstable Alfvén mode based on the discussion in Section 4.1.
The initial condition is ρ = 1, ux = 0.6453, uy = −0.4728, p = 0.1, Bx = 0.076256, By =
−0.49415, and Bz = 0, with uz = 0.01 for x < 0 and uz = −0.01 for x > 0. The other
parameters c = 0.9, γ = 2, µ0 = 1, and the grid are the same as in the previous test.

The initial condition was carefully chosen to produce an unstable mode. The bulk speed
and the nonrelativistic Alfvén speeds are u = 0.8 and VA = 0.5. The angle between the
velocity and magnetic field vectors is δ = 45◦; thus u‖ > VA. The magnetic field is at an
angle β = −81.2◦ relative to the x direction, which is close to the most unstable angle. With
these parameter choices, the complex eigenvalues of the semirelativistic Alfvén modes are
λ3,4 = 0.572 ± i0.0336 from (48).

Figure 3 shows a time series of the solution. The first leftmost curves at x ≈ 10 correspond
to t = 20 while the final rightmost curves are located at x ≈ 110 at t = 200. The distance
between them agrees well with (200 − 20)�(λ) ≈ 100. The wavelength of the fastest grow-
ing mode is around 20 units, which corresponds to a wave number k = 2π/20 ≈ 0.31. The
dashed line in the lower panel of the figure shows the theoretical growth of

min
x

uz(t) = uz,0ek�(λ3)t = −0.01e0.0182x , (98)

where we used t = x/�(λ) to convert the position of the peak to time. The agreement with
the numerical results is excellent.

We note that the growth of modes with shorter wavelengths is suppressed by numerical
dissipation. If the gird resolution is increased the wavelength of the fastest growing mode
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FIG. 3. The z components of the velocity and the magnetic field in the unstable Alfvén wave propagation
test. The solution are overplotted for times t = 20, 40, . . . , 200. The wave is propagating to the right. The dashed
line in the lower panel shows the theoretical growth (98) of the velocity peak.

becomes shorter and the growth rate becomes larger. As the amplitude of the mode becomes
nonlinear, however, the growth tends to slow down. It was also checked numerically that
without the Q source term, i.e., if c = c0 = 0.9, the Alfvén mode is stable, as we expect
from (85).

7.4. Propagation of Fast and Slow Waves

This numerical test involves the propagation of slow and fast waves. The initial condi-
tion is ρ = 1, uy = uz = 0, p = 0.1, Bx = By = 1, and Bz = 0, with ux = 0.51 for x < 0 and
ux = 0.49 for x > 0. Again γ = 2, µ0 = 1, and the reduced speed of light is c = 0.9 < vA =√

2. The grid is the same as in the Alfvén wave propagation test.
The small jump in ux results in four magnetosonic waves, as shown in Fig. 4. The numer-

ically obtained locations of the waves are in excellent agreement with analytic predictions
calculated from the roots of the characteristic equation (46). The analytic values for the
locations of the left- and right-propagating fast waves are x ≈ −120.4 and 182.9, while
the slow waves are at x ≈ 38.4 and 156.6. Even the approximate values provided by (67)
and (68) agree within a few percent, even though the parameters are rather extreme, e.g.,
u ≈ 0.55c and a = √

0.2 ≈ 0.5c. These values should be compared with locations of the
nonrelativistic fast waves, which would be at x = −190.2 and 390.4 at the same time.
Again, the semirelativistic approximation reduced the magnetosonic speeds below c. The
fast waves are positioned symmetrically with respect to γ 2

Aux t = 28.8, while the slow waves
are symmetric around ux t = 100. The original discontinuity in ux was symmetric around
0.5, but the four waves split this discontinuity in an asymmetric fashion.

Table II presents numerical values of the left- and right-running slow and fast waves for
the one-dimensional numerical test discussed in this Section. The five columns represent
wave speeds calculated using the full semirelativistic MHD equations (numerical roots of
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FIG. 4. The pressure and the x component of velocity in the fast and slow wave propagation test at time
t = 200. The × symbols show where the waves are expected to be based on the exact roots of the P4 polynomial
in (46), while the + symbols correspond to the approximate formulae (67) and (68).

Eq. 46), the approximate solution given by (67) and (68), the simplified set of equations
given by Eq. (38) and (39), the reduced j × B approximation given by Eq. (90), and the
nonrelativistic MHD speeds (65) and (66).

7.5. Standing Waves

We carefully checked that a standing Alfvén slow, or fast wave, is a solution of the
nonrelativistic as well as the full semirelativistic and Boris’s simplified semirelativistic
MHD equations. These tests are very similar to the tests presented in the previous sections,
with the following modifications: the initial ux = ± VA,x in the Alfvén wave test, while the
initial ux is symmetric around ±cs,x or ±c f,x in the slow and fast wave test, where VA,x ,
cs,x and c f,x are the nonrelativistic Alfvén, slow, and fast wave speeds, respectively. The
tests confirmed that the steady-state solutions are the same (within truncation error) in the
nonrelativistic and (simplified) semirelativistic cases.

The reduced j × B approximation does not preserve the steady state of the nonrelativistic
MHD equations. The error can be estimated from the difference of the wave speeds in the
last two columns of Tables I and II since both the nonrelativistic MHD and the reduced

TABLE II

Comparison of Magnetsosonic Speeds

Semirelativistic MHD Semirelativistic MHD Simplified Reduced Nonrelativistic
Wave (numerical) (approx.) Boris j × B MHD

Fast left −0.6017 −0.6042 −0.5811 −0.3324 −0.9509
Slow left +0.1921 +0.1938 +0.0560 +0.2117 +0.1918
Slow right +0.7831 +0.8062 +0.6066 +0.7883 +0.8082
Fast right +0.9144 +0.8921 +1.2065 +1.3324 +1.9509
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j × B approximations are Galilean invariant. The wave speed differences are 0.47, 0.62,
and 0.02 for the Alfvén, fast, and slow waves, respectively.

7.6. Convergence toward Steady State

As a practical application of the acceleration technique, we do a simplified three-
dimensional magnetosphere-type run. The simulation domain is −224RE < x < 32RE,
−64RE < y, z < 64RE, where RE = 6378 km is the radius of Earth. The solar wind en-
ters at the x = 32RE boundary with a velocity vector ux = −400 km/s, uy = uz = 0, density
5 m p/cm3 (where m p is the mass of the proton), temperature T ≈ 182,000 K, and an adiabatic
index γ = 5/3. In this simulation the solar wind carries a northward-pointing interplanetary
magnetic field with Bz = 5 nT, Bx = By = 0. The outer boundary conditions are very simple:
at x = 32RE there is superfast inflow of the solar wind, and at the other parts of the outer
boundary we apply a zero gradient condition.

At the origin there is a solid body with radius 3RE, which represents the Earth with its
dipole dominated surrounding. We place the inner boundary at 3RE to avoid the extremely
strong magnetic field inside this radius. The Earth’s dipole strength is charcterized by the
magnetic field strength at the equator, which is about 31,100 nT at 1RE. For this simplified
test the dipole is aligned with the z axis, with its magnetic north pole in the southern (z < 0)

hemisphere.
The inner boundary condition for the velocity is reflection of all components, which

means that there is no normal mass flux and no tangential slipping. The rotation of the
Earth is neglected in this test. The density is fixed to the solar wind value of 5 m p/cm3

and the temperature to 35,000 K at the inner boundary. The magnetic field is split into the
dipole field B0 and the deviation B1. The boundary conditions on the deviation field are
the following: the radial component B1,r is set to zero, while the tangential components of
B1 have zero gradient across the inner boundary. This boundary condition ensures that the
total field has no net magnetic monopole inside the inner boundary, while the tangential
components are allowed to produce a current ∇ × B1. Typically B1 is negligible relative to
B0 close to the Earth. Even at 3RE the magnetic field is so strong that the Alfvén speed is
around 18,000 km/s for the typical plasma densities. This can severely limit the time step.

The computational domain is resolved with a block-adaptive grid consisting of
1724 blocks. Each Cartesian block contains 4 × 4 × 4 cells, so there are are altogether
110,336 cells. The cell sizes vary between blocks, however. The coarsest blocks have cubic
cells with �x = 8RE, while the finest blocks have �x = 1Re. The finer cells are concen-
trated around the body and at the expected location of the bow shock and the magnetotail.
The initial conditions have the solar wind density, pressure, and velocity everywhere, but
initially the magnetic field contains the dipole field only (B = B0, B1 = 0), and the inter-
planetary field is propagated in from the inflow boundary as the simulation proceeds. Thus
the initial magnetic field is divergence free.

The simulations were run with a spatially first-order-accurate Linde scheme [12] for
up to 1.5 hours, which allows the interplanetary magnetic field to propagate 5400s ×
400 km/s ≈ 343RE, which exceeds the 256RE length of the computational domain. At
this point the spatial order is switched to second order using the symmetric β-limiter func-
tion (described in [6], p. 543, Eq. 21.3.35), and the simulation is stopped after 6 hour of
physical time. By this time the solutions have converged to a steady state, except for some
insignificant oscillations.
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FIG. 5. The steady-state solutions in the y = 0 planes of the nonaccelerated run with c = c0 (top panel) and
the accelerated runs with c = c0/200 without (middle panel) and with (bottom panel) Boris’s simplification. The
density (grayscale), the magnetic field (black lines), and the central body (black circle) are shown.

We compare the results of three runs: one with c = c0 and the others with a reduced
speed of light c = c0/200 ≈ 1500 km/s with and without Boris’s simplification. The steady
states obtained with the three methods are shown in Fig. 5. Although there are some small
differences due to the truncation errors of the rather coarse discretization, the overall results
clearly agree very well. The nonaccelerated run requires about 311,000 time steps to reach
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t = 6 hours, while in the accelerated simulations only about 25,000 time steps were needed.
This is a factor of 12.4 gain in CPU time!

8. CONCLUSIONS

We derived the semirelativistic MHD equations as the nonrelativistic hydrodynamic limit
of the relativistic MHD equations (a � c and u � c). The same system of equations was
obtained from the nonrelativistic MHD equations by keeping the displacement current and
charge density, which are usually neglected. These equations are suitable for modeling
plasmas where the nonrelativistic Alfvén speed would approach or exceed the speed of
light.

The steady-state solution of these equations is independent of the value of the speed
of light applied in the displacement current term. By artificially lowering c below the true
speed of light c0 in this term, one can reduce the wave speeds, which allows larger time steps
for explicit numerical schemes. When the equations are written in a conservation from, a
source term appears when c �= c0. This term results from our always having to use c0 in the
charge density to obtain a valid steady-state solution.

The wave speeds, which are required by various numerical schemes, were calculated. We
have found the exact solutions for all wave speeds, although the fast and slow speeds are roots
of a general quartic equation. We have also discovered some very accurate and relatively
simple approximations for the slow and fast wave speeds. All the wave speeds are bounded
by c + |u| + a, unlike in nonrelativistic MHD, in which the Alfvén speed VA = B/

√
µ0ρ can

be arbitrarily larger than c + |u| + a. For the numerical schemes considered in this paper,
the wave speeds are used to adjust the numerical fluxes so that they provide stability with-
out excessive dissipation. The approximations in the formulas only have an effect on the
numerical dissipation, but the consistency of the discretization is not compromised at all.

Based on the characteristic wave speeds, the stability conditions for the semirelativistic
MHD equations can be established. In the high-Alfvén-speed limit, in which the artificial
lowering of c can be useful, the stability condition is very unrestrictive: the bulk speed u
should not exceed c. In the low-Alfvén-speed limit, however, a weak instability was found
when the field-aligned flow speed is super-Alfvénic. This instability only arises when the
speed of light is artificially reduced; the semirelativistic MHD equations are stable. If this
instability becomes a practical problem in some parts of the simulation domain, we propose
switching back to the nonrelativistic MHD equations in that region. This will not affect the
time-step restriction, since the Alfvén speed is low, and it will not influence the steady-state
solution either.

Alternatively, one can also use Boris’s simplified equations to obtain a steady-state solu-
tion of the nonrelativistic MHD equations. The simplified equations are fully conservative.
We calculated the Alfvén wave speed for this simplified equation and found it to be uncon-
ditionally stable. The magnetosonic speeds were only found in the plasma frame, but we
gave an upper estimate for the maximum propagation speed.

Our analytical results were fully confirmed by the numerical tests. In the magnetosphere-
type simulation we gained a factor of about 12.4 in the average time-step size by reducing
the speed of light. The tests confirmed that the steady-state solution is the same as the one
obtained with the true speed of light, except for truncation-level errors.

There are several other ways to accelerate convergence to steady state. Local time stepping
is one of the simplest and most powerful technique and it has been used in the BATS-R-US
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code with great success. In the local-time-stepping-algorithm the time step �t is different for
each computational cell, restricted only by the local CFL condition. Thus each cell converges
toward steady state at its own pace. In the converged steady-state solution, however, the
numerical fluxes and sources exactly cancel, so the time step becomes irrelevant. The
advantage of local time stepping is that it is very simple to implement, no extra calculations
are needed, and the achieved acceleration can be similar or even better than with the artificial
reduction of the speed of light. The disadvantage of local time stepping is that it cannot be
applied to time-accurate runs at all, not even as a crude approximation.

Another way to accelerate the convergence to steady state is implicit time stepping.
Implemention of a fully implicit MHD scheme is a nontrivial problem. The achievable
acceleration strongly depends on the efficiency of the numerical schemes and the nonlinear
instabilities of the simulated problem. The advantage of implicit time stepping is that it can
be applied to time-accurate problems without changing the governing physical equations.
The implementation of implicit time stepping into BATS-R-US is under development.
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